WinFrog Device Group:	USBL	
Device Name/Model:	NAUTRONIX RS/916	
Device Manufacturer:	Nautronix Ltd. Nautronix House Howe Moss Avenue Kirkhill, Dyce Aberdeen AB21 0GP Scotland T: +44 (0)1224 775 700 F: +44 (0)1224 775 800 E: aberdeen@nautronix.co.uk	
Device Data String(s) Output to WinFrog:		
WinFrog Data String(s) Output to Device:		
WinFrog Data Item(s) and their RAW record:	USBL DATA 309 GPS ATTITUDE DATA 413 HEADING 910	

DEVICE DESCRIPTION:

Nautronix RS/916 is an ultra short baseline (USBL) underwater acoustic tracking system, which is used to either determine the position of Remotely Operated Vehicles (ROV's), towed equipment, etc or to position the ship relative to a fixed beacon.

To track a remote vehicle, an acoustic beacon (responder or transponder) operating at a set frequency, is attached to the equipment that is to be tracked. By interrogating the beacon and subsequently receiving an acoustic response, the Nautronix RS/916 accurately determines the position of the beacon relative to the hydrophone. This data is then output to external equipment for final determination of the beacon's real world coordinates.

In order to position the ship from a fixed beacon, the beacon is attached to either the sea bottom or a subsurface structure and the position of the hydrophone is calculated relative to the fixed beacon's position.

DEVICE CONFIGURATION INSTRUCTIONS

WINFROG I/O DEVICES > EDIT I/O:

Serial

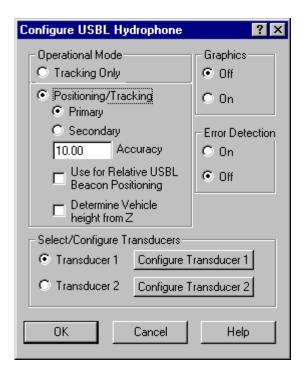
Configurable Parameters

WINFROG I/O DEVICES > CONFIGURE DEVICE:

No configuration is required at the I/O Device window level.

WINFROG VEHICLE > CONFIGURE VEHICLE DEVICES > DEVICE DATA ITEM > EDIT:

Adding the Nautronix RS/916 device creates four data items: USBL HYDROPHONE, BEACON, ATTITUDE and HEADING. Once the data items have been added to the vehicle, they must be edited to suit the application.


Data item: USBL, Nautronix RS/916, USBL HYDROPHONE

For vehicle tracking, the **USBL**, **Nautronix RS/916**, **USBL Hydrophone** data item must be added to the device list of the vehicle to which the hydrophone has been physically attached (i.e. the main ship).

USBL systems can also be used for positioning of the main vessel. In this type of operation, the USBL Beacon must be physically attached to some fixed point on the seabed or subsurface structure. The Hydrophone position (i.e. vehicle position) is derived from measurements made to the fixed beacon. For this type of positioning, you must define a working Xponder File (*.XPT) in WinFrog, and enter the fixed coordinates of the Beacon into that file. The Hydrophone must be added to the ship's device list and configured for positioning/tracking as opposed to tracking mode. See chapter 5 of the WinFrog User's Guide for more information on setting up *.XPT files.

Configuration of the USBL Hydrophone

Once the NAUTRONIX RS/916 Hydrophone has been added to the appropriate vehicle's device list it must be edited to suit the application. In the vehicle's Devices list, highlight the USBL, Nautronix RS/916, USBL Hydrophone data item then click the Edit button. The Configure USBL Hydrophone dialog box appears as seen below.

Operational Mode:

As mentioned above, USBL systems can be used for tracking of subsurface vehicles or for positioning of the main vehicle to which the hydrophone is attached. Select **Tracking Only** if relative tracking of a structure/vessel is desired.

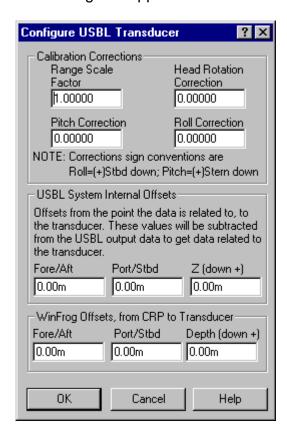
Select **Positioning/Tracking** and **Primary** if you want to position the Master Vessel relative to a stationary (fixed) beacon. The beacon must be fixed at a stationary (fixed) location, as defined in a working XPONDER (.XPT) file. Select the **Secondary** radio button if this is not the primary positioning source (i.e. if this is a comparison position), or if you are setting up for a USBL Calibration. Note as well that if you are setting up for a USBL Calibration, the Hydrophone should also be specified as a Secondary positioning device. See chapter 20 of the WinFrog User's Guide for more information on USBL Calibrations.

If Positioning/Tracking is selected, you can also specify **Use for Relative USBL Beacon Positioning**. This feature controls the use of the USBL positioning of the hydrophone from a fixed beacon for application to relative USBL Beacon positioning. In this mode, the difference between the hydrophone position as determined directly from observation to fixed beacon is compared to the hydrophone position determined from other positioning sources (e.g. DGPS). This difference is then applied to the position determined for any tracked beacon. The concept is that any inherent errors due to local conditions, both environmental and mechanical, are cancelled out. This is independent of the Primary/Secondary setting.

Determine Vehicle height from Z

Select this checkbox if the USBL system is to be used to determine the height of the vehicle. This is independent of the Primary/Secondary setting.

Graphics:


Select On to have WinFrog display the device name and a square at the location of the hydrophone within the Graphics and Bird's Eye windows.

Error Detection:

Select On to have WinFrog analyze the error codes included in the Nautronix RS/916's output data strings and to have WinFrog include error detection codes in the Raw Files for post project QC analysis. If an error code is recognized, WinFrog will not utilize that particular data string in its calculations of the beacon position.

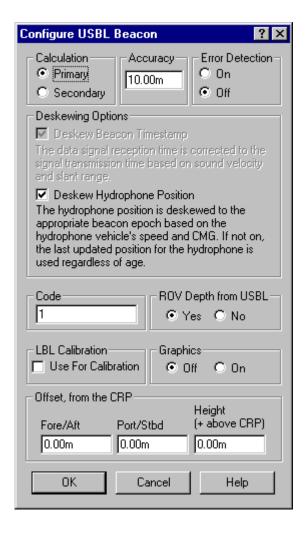
Select/Configure Transducers:

Some USBL systems can be configured with two hydrophones. Before configuring a transducer, ensure that it is the correct one and that the values entered refer to that device. Click Configure Transducer 1 or Configure Transducer 2 as required. The Configure USBL Transducer dialog box appears as seen below.

Calibration Corrections:

WinFrog allows you to enter Range Scale, Heading, Pitch and Roll correction values to correct raw USBL measurements. Note that the Heading, Pitch and Roll values are entered in degrees and decimal degrees. These values can be determined by using WinFrog's USBL calibration utility. See chapter 20 of the WinFrog User's Guide for detailed information on calibration of USBL systems.

USBL System Internal Offsets:


This section of the Configure USBL Transducer dialog box is for the entry of X,Y and Z offsets that will be applied to the raw observations received from the Nautronix RS/916 console.

The upper fields are used to remove any offsets that have been entered into the Nautronix RS/916 console. This may come into use particularly when USBL systems are used for vessel positioning, where the ship's DP system needs positional information to relate to the vessel's center of gravity as opposed to just at the USBL hydrophone. WinFrog however requires all XYZ offsets to relate to the USBL hydrophone. These upper fields are then used to enter the same offsets as are entered in the Nautronix RS/916 console, nullifying the offsets in the Nautronix RS/916. As these values are subtracted from the received data, ensure that values are entered using the same sign as internal Nautronix RS/916 offsets.

The lower fields, **Winfrog Offsets, from CRP to Transducer**, are similar to all other positional device offsets entered in WinFrog. These offsets must be entered to relate the hydrophone's position to the vessel's Common Reference Point (CRP). All offsets are entered with signage referring to the distance *from* the CRP *to* the hydrophone.

Data item: USBL, Nautronix RS/916, BEACON

As mentioned above, for subsurface vehicle positioning, the USBL beacon must be added to the appropriate subsurface vehicle's device list. Once added to the device list, it must be edited to suit the application. Editing the **USBL**, **NAUTRONIX RS/916**, **Beacon** data item brings up the Configure USBL Beacon dialog box, as seen below. The Beacon data item must be added to the vehicle to which the beacon has been physically attached (i.e. the ROV or towed vehicle).

Calculation:

Set Calculation to **Primary** if the beacon is to be used for positioning the vehicle to which it is attached. Multiple beacons can be added to the same vehicle's device list, each configured as Primary. WinFrog will calculate a weighted mean position using the Accuracy value entered as the basis for the relative weighting.

Setting the calculation to Secondary will result in the Beacon's position being monitored but not used in the vehicle's position calculation. Note that in case of Primary data item failure WinFrog will not automatically use the data item(s) designated as Secondary. You must change the calculation to Primary in order for the data item to be used in position calculations.

Accuracy:

This value is used by WinFrog to weight the use of different positioning devices in solving a single vehicle's position. The lower the accuracy value entered, the more accurate it is deemed to be, and hence the more weight that will be applied to it in comparison to the other devices.

Error Detection:

Setting Error Detection to 'On' instructs WinFrog to identify error codes received in the USBL data string and disable the use of bad data. USBL systems include various error codes in the data string when the beacon is not within the optimum "cone of operation" or other operational parameters have been exceeded.

Deskewing Options:

Deskew Beacon Timestamp: This option is for future development.

Deskew Hydrophone Position:

When positioning the beacon, WinFrog uses the last calculated position for the associated USBL Hydrophone to determine the tracked beacon's position. Depending on the vehicle's Kalman filter and Dead Reckoning settings, the position of the hydrophone may be up to 1 second old.

It is recommended that this deskewing option be enabled to remove positional inaccuracies associated with this latency.

Code:

Enter a value matching the code of the beacon attached to the vehicle.

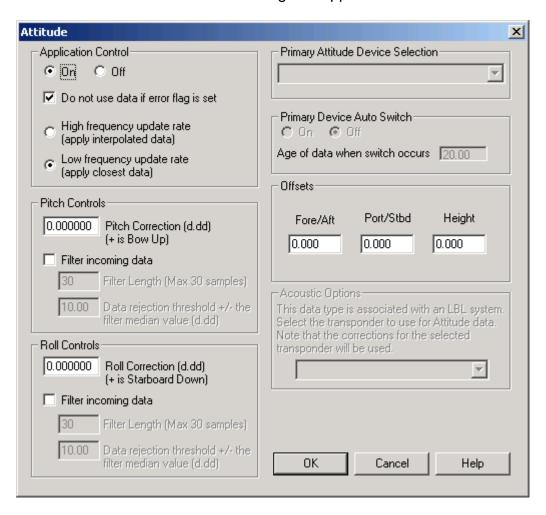
ROV Depth from USBL:

If Yes is selected, the ROV's depth will be set to the calculated USBL beacon depth.

LBL Calibration:

Select the Use for Calbration checkbox if the beacon is to be used in an LBL Calibration.

Graphics:


Select On to have WinFrog plot a square and label to represent the beacon location in the Graphics and Bird's Eve displays.

Offsets:

This portion of the dialog box is used to enter Offsets that relate the beacon's location to the subsurface vehicle's Common Reference Point (CRP). These values are set similar to values that would be applied to any device offset within WinFrog, with values entered as measured *from* the CRP *to* the device. A heading (i.e. gyro) device must also be added to the vehicle's device list to ensure that the offsets are applied in the correct direction.

Data item: USBL, Nautronix RS/916, ATTITUDE

The Attitude data item must also be edited once it is added to a vehicle's device list. Highlight the **USBL**, **Nautronix RS/916**, **Attitude** data item in the vehicle's device list, then click the **Edit** button. The **Attitude** dialog box appears as seen below.

Attitude

By default, the sensor mode is off, meaning that data from the device will not be used in the vehicle's calculations. To turn the sensor on, and begin using the inclination corrections in the position output, click the 'On' radio button.

Error flag testing

The error flag check box is applicable to those devices that output a code indicating the data is either good or bad. If checked and the device supports such a code in its telegram, WinFrog will look at the code and if the data is indicated as bad, WinFrog will not use the data.

Sensor Update Frequency Rate

If the associated attitude sensor has a high frequency update rate (e.g. 10Hz and higher) it is appropriate to extract attitude data for application by either

interpolating or extrapolating for a given epoch. In this case, the *High frequency update* option should be selected. Some attitude sensors have slow update rates, in particular those installed in acoustic transponders that require interrogation. For these sensors interpolation/extrapolation can produce a bad value as there is insufficient information to determine the correct shape of the curve (aliasing). Thus the most current attitude needs to be used. In this case, select the *Low Frequency update* option. This option applies to the use of the attitude data by the following data items:

- POSITION
- ELEVATION
- ALTITUDE
- XPONDER
- LBL TRANSCEIVER
- PROFILE

Pitch and Roll

There are two control groups, one for each of pitch and roll. Correction values can be added in this section of the window. The correction values (entered in units of degrees-decimal degrees) are added to the raw pitch and roll values received from the device before the data is applied to the vehicle's calculations. Ensure that entered values adhere to the sign convention used by WinFrog. You can verify that the corrections are entered properly by viewing the pitch and roll values in the I/O Device window and the Vehicle Text window.

Filtering

Additionally you may filter the incoming values to remove extraneous noise or spikes – check boxes are provided to switch this feature on or off. A filter length (up to 30 samples) and a threshold value (applied to the median of the samples in the filter to obtain lower and upper bounds) can be entered. Any pitch or roll values outside of the bounds are rejected and not used in the vehicle calculations, but will be recorded in the RAW files. If either one of pitch or roll is rejected, both values are ignored, although you may set up the filtering parameters for them separately. The status of the filters, including the current valid range for each of pitch and roll, and the percentage of values rejected, can be viewed in the calculations window, selecting the appropriate ATTITUDE data item.

Important:

Do not enable filtering unless there is a high enough data rate (say 10hz) to correctly determine the shape of the curve. Essentially, if the low frequency update rate is selected above, do not enable filtering.

Primary Attitude Device Selection

If more than one attitude device is present, you may select one of them to be primary and the others to be secondary and allow WinFrog to automatically

switch between them should the primary system stop sending data or has bad data. There must be at least two attitude data items added to the vehicle to use this feature. (Note: The attitude and offset data displayed in this dialog is for the attitude device corresponding to the data item that is being edited. Selecting a Primary Attitude Device from the drop down list does not affect these values for any attitude device in the list. Every attitude device needs to be set up for its own corrections and offsets.)

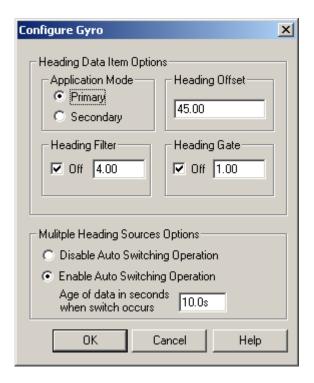
Primary Device Auto Switch

Select the On radio button to turn on this feature. Then enter the time out time in the edit box. If WinFrog does not receive data from the primary attitude device, or if it receives bad data for this length of time, it will switch to the next secondary that is enabled and has good data.

Auto Switch Feature Usage

To use this feature first turn the sensor on as described in the Attitude section above. Next, select the attitude device that you wish to be primary from the drop down list box. Then turn the primary device auto switch on and enter the time out time. Then edit all the other attitude data items and enable them in the Attitude group box. Note that the same selected primary will be displayed for all attitude data items; similarly, the automatic feature will be turned on and the time out time will be the same. However, you must individually enable each attitude device in the Attitude group box.

Offsets


These are not applicable in this case.

Acoustic Options

This applies to long base line acoustic transponders that have inclinometers. See chapter 17 for more information.

Data item: USBL, Nautronix RS/916, HEADING

The Heading data item must also be edited once it is added to a vehicle's device list. Highlight the **USBL**, **Nautronix RS/916**, **HEADING** data item in the vehicle's device list, then click the **Edit** button. The **Configure Gyro** dialog box appears as seen below.

Heading Data Item Options:

Application Mode (Primary/Secondary):

Set the type of calculation to Primary or Secondary by selecting the appropriate radio button. Devices set to Primary are used to provide the vehicle heading information. Devices set to Secondary are simply monitored, and are not used in the vehicle's calculations.

Note that WinFrog supports automatic switching from a designated Primary to a Secondary in the case that data from the Primary fails (see Multiple Heading Sources Options).

Heading Offset:

A correction value (as determined from a gyro calibration) can be input in the Heading Offset box. This value is added to the heading value from the Device to provide a corrected heading for the vehicle. Note that positive or negative values can be entered.

Heading Filter/Heading Gate:

The Heading Filter is used to "smooth" heading values used by the vehicle. The value entered in the Heading Filter indicates the number of headings that will be used to predict the next heading value. The larger the value entered, the "heavier" the filter will be - i.e. the slower the vehicle's heading will respond to changes.

The heading gate defines a tolerance value to limit the use of anomalies in gyro readings. If the next observed gyro value received falls outside the specified range of predicted values (i.e. plus or minus the entered value), the value will not be used.

Multiple Heading Sources Options:

WinFrog supports automatic switching from a designated Primary source to an alternate Secondary source in the event that the Primary fails. The first Secondary source to receive data after the Primary has failed becomes the alternate Primary providing the heading for the vehicle. When the designated Primary is detected as active again, the alternate Primary source reverts to Secondary and the designated Primary provides the heading data to the vehicle.

If an alternate Secondary fails and there are additional Secondary sources, it in turn is detected by the first of the remaining operational Secondary sources to receive data after the failure at which time this Secondary becomes the alternate Primary.

Note that this option is only available if more than 1 HEADING source is associated with the respective vehicle. Changes made to the Auto Switching options for any one of the HEADING data items are automatically assigned to the others upon exiting this dialog with OK. If the Auto Switching option is enabled and the respective HEADING source has been set to Primary, all others are automatically set to Secondary. The exception to this is when configuring a WinFrog Controlled Remote (WinFrog with a Remote module) from a Controller. In this case, changes made to one HEADING source are not automatically made to other HEADING sources. The operator must explicitly make them for each HEADING source.

This option is not available in the WinFrog Remote package.

Disable/Enable Auto Switching Operation:

Select the mode you wish to operate WinFrog.

Age of data in seconds when switch occurs:

Enter the age of data that is permitted before the source is considered to have failed.